Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0269717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585472

RESUMO

Carlsberg subtilisin from Bacillus licheniformis PB1 was investigated as a potential feed supplement, through immobilizing on bentonite for improving the growth rate of broilers. Initially, the pre-optimized and partially-purified protease was extracted and characterized using SDS-PAGE with MW 27.0 KDa. The MALDI-TOF-MS/MS spectrum confirmed a tryptic peptide peak with m/z 1108.496 referring to the Carlsberg subtilisin as a protein-digesting enzyme with alkaline nature. The highest free enzyme activity (30 U/mg) was observed at 50°C, 1 M potassium phosphate, and pH 8.0. the enhanced stability was observed when the enzyme was adsorbed to an inert solid support with 86.39 ± 4.36% activity retention under 20 optimized conditions. Additionally, the dried immobilized enzyme exhibited only a 5% activity loss after two-week storage at room temperature. Structural modeling (Docking) revealed that hydrophobic interactions between bentonite and amino acids surrounding the catalytic triad keep the enzyme structure intact upon drying at RT. The prominent hygroscopic nature of bentonite facilitated protein structure retention upon drying. During a 46-days study, supplementation of boilers' feed with the subtilisin-bentonite complex promoted significant weight gain i.e. 15.03% in contrast to positive control (p = 0.001).


Assuntos
Aves Domésticas , Subtilisinas , Animais , Subtilisinas/metabolismo , Aves Domésticas/metabolismo , Galinhas/metabolismo , Bentonita , Espectrometria de Massas em Tandem , Subtilisina , Concentração de Íons de Hidrogênio
2.
J Fungi (Basel) ; 8(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36135697

RESUMO

Neofusicoccum parvum is a fungal plant pathogen of a wide range of hosts but knowledge about the virulence factors of N. parvum and host-pathogen interactions is rather limited. The molecules involved in the interaction between N. parvum and Eucalyptus are mostly unknown, so we used a multi-omics approach to understand pathogen-host interactions. We present the first comprehensive characterization of the in vitro secretome of N. parvum and a prediction of protein-protein interactions using a dry-lab non-targeted interactomics strategy. We used LC-MS to identify N. parvum protein profiles, resulting in the identification of over 400 proteins, from which 117 had a different abundance in the presence of the Eucalyptus stem. Most of the more abundant proteins under host mimicry are involved in plant cell wall degradation (targeting pectin and hemicellulose) consistent with pathogen growth on a plant host. Other proteins identified are involved in adhesion to host tissues, penetration, pathogenesis, or reactive oxygen species generation, involving ribonuclease/ribotoxin domains, putative ricin B lectins, and necrosis elicitors. The overexpression of chitosan synthesis proteins during interaction with the Eucalyptus stem reinforces the hypothesis of an infection strategy involving pathogen masking to avoid host defenses. Neofusicoccum parvum has the molecular apparatus to colonize the host but also actively feed on its living cells and induce necrosis suggesting that this species has a hemibiotrophic lifestyle.

3.
mBio ; 13(4): e0093522, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35913158

RESUMO

Cellulose being the most abundant polysaccharide on earth, beta-glucosidases hydrolyzing cello-oligosaccharides are key enzymes to fuel glycolysis in microorganisms developing on plant material. In Streptomyces scabiei, the causative agent of common scab in root and tuber crops, a genetic compensation phenomenon safeguards the loss of the gene encoding the cello-oligosaccharide hydrolase BglC by awakening the expression of alternative beta-glucosidases. Here, we revealed that the BglC compensating enzyme BcpE2 was the GH3-family beta-glucosidase that displayed the highest reported substrate promiscuity and was able to release the glucose moiety of all tested types of plant-derived heterosides (aryl ß-glucosides, monolignol glucosides, cyanogenic glucosides, anthocyanosides, and coumarin heterosides). BcpE2 structure analysis highlighted a large cavity in the PA14 domain that covered the active site, and the high flexibility of this domain would allow proper adjustment of this cavity for disparate heterosides. The exceptional substrate promiscuity of BcpE2 provides microorganisms a versatile tool for scavenging glucose from plant-derived nutrients that widely vary in size and structure. Importantly, scopolin was the only substrate commonly hydrolyzed by both BglC and BcpE2, thereby generating the potent virulence inhibitor scopoletin. Next to fueling glycolysis, both enzymes would also fine-tune the strength of virulence. IMPORTANCE Plant decaying biomass is the most abundant provider of carbon sources for soil-dwelling microorganisms. To optimally evolve in such environmental niches, microorganisms possess an arsenal of hydrolytic enzymatic complexes to feed on the various types of polysaccharides, oligosaccharides, and monosaccharides. In this work, structural, enzymatic, and expression studies revealed the existence of a "swiss-army knife" enzyme, BcpE2, that was able to retrieve the glucose moiety of a multitude of plant-derived substrates that vary in size, structure, and origin. This enzyme would provide the microorganisms with a tool that would allow them to find nutrients from any type of plant-derived material.


Assuntos
Glucose , beta-Glucosidase , Glucose/metabolismo , Glucosídeos/metabolismo , Hidrólise , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
4.
Sci Rep ; 12(1): 4127, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260766

RESUMO

The family Anisakidae, mainly represented by Anisakis simplex s.l. and Pseudoterranova decipiens, encompasses zoonotic nematodes infecting many marine fish. Both are responsible for gastrointestinal disease in humans after ingestion of a live larva by consumption of undercooked fish, and, in the case of A. simplex, an allergic reaction may occur after consuming or even handling infected fish. Due to its phylogenetic relatedness with A. simplex, few studies investigated the allergenic potential of P. decipiens, yet none of them focused on its excretory/secretory (E/S) proteins that easily get missed when working solely on extracts from crushed nematodes. Moreover, these E/S allergens remain behind even when the larva has been removed during fish quality processing. Therefore, the aim was to investigate if Anisakis-like allergens could also be detected in both crushed and E/S P. decipiens protein extract using targeted mass spectrometry analysis and immunological methods. The results confirmed that at least five A. simplex allergens have homologous proteins in P. decipiens; a result that emphasizes the importance of also including E/S protein extracts in proteomic studies. Not only A. simplex, but also P. decipiens should therefore be considered a potential source of allergens that could lead to hypersensitivity reactions in humans.


Assuntos
Anisakis , Ascaridoidea , Hipersensibilidade , Alérgenos , Animais , Peixes , Imunoensaio , Larva/metabolismo , Filogenia , Proteômica/métodos
5.
Microb Genom ; 8(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35040428

RESUMO

The development of spots or lesions symptomatic of common scab on root and tuber crops is caused by few pathogenic Streptomyces with Streptomyces scabiei 87-22 as the model species. Thaxtomin phytotoxins are the primary virulence determinants, mainly acting by impairing cellulose synthesis, and their production in S. scabiei is in turn boosted by cello-oligosaccharides released from host plants. In this work we aimed to determine which molecules and which biosynthetic gene clusters (BGCs) of the specialized metabolism of S. scabiei 87-22 show a production and/or a transcriptional response to cello-oligosaccharides. Comparative metabolomic analyses revealed that molecules of the virulome of S. scabiei induced by cellobiose and cellotriose include (i) thaxtomin and concanamycin phytotoxins, (ii) desferrioxamines, scabichelin and turgichelin siderophores in order to acquire iron essential for housekeeping functions, (iii) ectoine for protection against osmotic shock once inside the host, and (iv) bottromycin and concanamycin antimicrobials possibly to prevent other microorganisms from colonizing the same niche. Importantly, both cello-oligosaccharides reduced the production of the spore germination inhibitors germicidins thereby giving the 'green light' to escape dormancy and trigger the onset of the pathogenic lifestyle. For most metabolites - either with induced or reduced production - cellotriose was revealed to be a slightly stronger elicitor compared to cellobiose, supporting an earlier hypothesis which suggested the trisaccharide was the real trigger for virulence released from the plant cell wall through the action of thaxtomins. Interestingly, except for thaxtomins, none of these BGCs' expression seems to be under direct control of the cellulose utilization repressor CebR suggesting the existence of a yet unknown mechanism for switching on the virulome. Finally, a transcriptomic analysis revealed nine additional cryptic BGCs that have their expression awakened by cello-oligosaccharides, suggesting that other and yet to be discovered metabolites could be part of the virulome of S. scabiei.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Celobiose/farmacologia , Celulose/farmacologia , Tubérculos/microbiologia , Streptomyces/crescimento & desenvolvimento , Trioses/farmacologia , Fatores de Virulência/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Macrolídeos/metabolismo , Metabolômica , Família Multigênica/efeitos dos fármacos , Piperazinas/metabolismo , Tubérculos/crescimento & desenvolvimento , RNA-Seq , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Streptomyces/patogenicidade
6.
Pathogens ; 10(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34832553

RESUMO

The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.

7.
Microbiol Spectr ; 9(1): e0057121, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34346752

RESUMO

Streptomyces scabies is a phytopathogen associated with common scab disease. This is mainly attributed to its ability to produce the phytotoxin thaxtomin A, the biosynthesis of which is triggered by cellobiose. During a survey of other metabolites released in the presence of cellobiose, we discovered additional compounds in the thaxtomin-containing extract from Streptomyces scabies. Structural analysis by mass spectrometry (MS) and nuclear magnetic resonance (NMR) revealed that these compounds are amino acid sequence variants of the TOR (target of rapamycin) kinase (TORK) pathway-inhibitory lipopeptide rotihibin A, and the main compounds were named rotihibins C and D. In contrast to thaxtomin, the production of rotihibins C and D was also elicited in the presence of glucose, indicating different regulation of their biosynthesis. Through a combination of shotgun and targeted proteomics, the putative rotihibin biosynthetic gene cluster rth was identified in the publicly available genome of S. scabies 87-22. This cluster spans 33 kbp and encodes 2 different nonribosomal peptide synthetases (NRPSs) and 12 additional enzymes. Homologous rth biosynthetic gene clusters were found in other publicly available and complete actinomycete genomes. Rotihibins C and D display herbicidal activity against Lemna minor and Arabidopsis thaliana at low concentrations, shown by monitoring the effects on growth and the maximal photochemistry efficiency of photosystem II. IMPORTANCE Rotihibins A and B are plant growth inhibitors acting on the TORK pathway. We report the isolation and characterization of new sequence analogues of rotihibin from Streptomyces scabies, a major cause of common scab in potato and other tuber and root vegetables. By combining proteomics data with genomic analysis, we found a cryptic biosynthetic gene cluster coding for enzyme machinery capable of rotihibin production. This work may lead to the biotechnological production of variants of this lipopeptide to investigate the exact mechanism by which it can target the plant TORK pathway in Arabidopsis thaliana. In addition, bioinformatics revealed the existence of other variants in plant-associated Streptomyces strains, both pathogenic and nonpathogenic species, raising new questions about the actual function of this lipopeptide. The discovery of a module in the nonribosomal peptide synthetase (NRPS) that incorporates the unusual citrulline residue may improve the prediction of peptides encoded by cryptic NRPS gene clusters.


Assuntos
Proteínas de Bactérias/genética , Herbicidas/metabolismo , Família Multigênica , Oligopeptídeos/biossíntese , Streptomyces/genética , Streptomyces/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Celobiose/metabolismo , Regulação Bacteriana da Expressão Gênica , Herbicidas/farmacologia , Oligopeptídeos/farmacologia , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
8.
Toxics ; 8(4)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322338

RESUMO

The potential of proteome responses as early-warning indicators of insecticide exposure was evaluated using the non-biting midge Chironomus riparius (Meigen) as the model organism. Chironomus riparius larvae were exposed to environmentally relevant concentrations of the neurotoxic pesticide spinosad to uncover molecular events that may provide insights on the long-term individual and population level consequences. The iTRAQ labeling method was performed to quantify protein abundance changes between exposed and non-exposed organisms. Data analysis revealed a general dose-dependent decrease in the abundance of globin proteins as a result of spinosad exposure. Additionally, the downregulation of actin and a larval cuticle protein was also observed after spinosad exposure, which may be related to previously determined C. riparius life-history traits impairment and biochemical responses. Present results suggest that protein profile changes can be used as early warning biomarkers of pesticide exposure and may provide a better mechanistic interpretation of the toxic response of organisms, aiding in the assessment of the ecological effects of environmental contamination. This work also contributes to the understanding of the sublethal effects of insecticides in invertebrates and their molecular targets.

9.
Biochim Biophys Acta Gene Regul Mech ; 1863(10): 194615, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32758700

RESUMO

In the plant pathogen Streptomyces scabies, the gene bglC encodes a GH1 family cellobiose beta-glucosidase that is both required for primary metabolism and for inducing virulence of the bacterium. Deletion of bglC (strain ΔbglC) surprisingly resulted in the augmentation of the global beta-glucosidase activity of S. scabies. This paradoxical phenotype is highly robust as it has been observed in all bglC deletion mutants independently generated, thereby highlighting a phenomenon of genetic compensation. Comparative proteomics allowed to identify two glycosyl hydrolases - named BcpE1 and BcpE2 - of which peptide levels were significantly increased in strain ΔbglC. Quantitative RT-PCR revealed that the higher abundance of BcpE1 and BcpE2 is triggered at the transcriptional level, the expression of their respective gene being 100 and 15 times upregulated. Enzymatic studies with pure BcpE proteins showed that they both possess beta-glucosidase activity thereby explaining the genotypic-phenotypic discrepancy of the bglC deletion mutant. The GH1 family BcpE1 could hydrolyze cellobiose and generate glucose similarly to BglC itself thereby mainly contributing to the survival of strain ΔbglC when cellobiose is provided as sole nutrient source. The low affinity of BcpE2 for cellobiose suggests that this GH3 family beta-glucosidase would instead primarily target another and yet unknown glucose-beta-1,4-linked substrate. These results make S. scabies a new model system to study genetic compensation. Discovering how, either the bglC DNA locus, its mRNA, the BglC protein, or either its enzymatic activity controls bcpE genes' expression, will unveil new mechanisms directing transcriptional repression.


Assuntos
Proteínas de Bactérias/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Fenótipo , beta-Glucosidase/genética , Proteínas de Bactérias/metabolismo , Ativação Enzimática , Isoenzimas , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Ativação Transcricional , beta-Glucosidase/química , beta-Glucosidase/metabolismo
10.
Front Microbiol ; 11: 630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328052

RESUMO

Almost all bacteria secrete spherical membranous nanoparticles, also referred to as membrane vesicles (MVs). A variety of MV types exist, ranging from 20 to 400 nm in diameter, each with their own formation routes. The most well-known vesicles are the outer membrane vesicles (OMVs) which are formed by budding from the outer membrane in Gram-negative bacteria. Recently, other types of MVs have been discovered and described, including outer-inner membrane vesicles (OIMVs) and cytoplasmic membrane vesicles (CMVs). The former are mainly formed by a process termed endolysin-triggered cell lysis in Gram-negative bacteria, the latter are formed by Gram-positive bacteria. MVs carry a wide range of cargo, such as nucleic acids, virulence factors and antibiotic resistance components. Moreover, they are involved in a multitude of biological processes that increase bacterial pathogenicity. In this review, we discuss the functional aspects of MVs secreted by bacteria associated with cystic fibrosis and nosocomial pneumonia. We mainly focus on how MVs are involved in virulence, antibiotic resistance, biofilm development and inflammation that consequently aid these bacterial infections.

11.
Biotechnol Bioeng ; 117(2): 453-465, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31612987

RESUMO

Glucolipids (GLs) are glycolipid biosurfactants with promising properties. These GLs are composed of glucose attached to a hydroxy fatty acid through a ω and/or ω-1 glycosidic linkage. Up until today these interesting molecules could only be produced using an engineered Starmerella bombicola strain (∆ugtB1::URA3 G9) producing GLs instead of sophorolipids, albeit with a very low average productivity (0.01 g·L-1 ·h-1 ). In this study, we investigated the reason(s) for this via reverse-transcription quantitative polymerase chain reaction and Liquid chromatography-multireaction monitoring-mass spectrometry. We found that all glycolipid biosynthetic genes and enzymes were downregulated in the ∆ugtB1 G9 strain in comparison to the wild type. The underlying reason for this downregulation was further investigated by performing quantitative metabolome comparison of the ∆ugtB1 G9 strain with the wild type and two other engineered strains also tinkered in their glycolipid biosynthetic gene cluster. This analysis revealed a clear distortion of the entire metabolism of the ∆ugtB1 G9 strain compared to all the other strains. Because the parental strain of the former was a spontaneous ∆ura3 mutant potentially containing other "hidden" mutations, a new GL production strain was generated based on a rationally engineered ∆ura3 mutant (PT36). Indeed, a 50-fold GL productivity increase (0.51 g·L-1 ·h-1 ) was obtained with the new ∆ugtB1::URA3 PT36 strain compared with the G9-based strain (0.01 g·L-1 ·h-1 ) in a 10 L bioreactor experiment, yielding 118 g/L GLs instead of 8.39 g/L. Purification was investigated and basic properties of the purified GLs were determined. This study forms the base for further development and optimization of S. bombicola as a production platform strain for (new) biochemicals.


Assuntos
Glicolipídeos , Engenharia Metabólica/métodos , Saccharomycetales , Tensoativos , Reatores Biológicos , Fermentação , Glicolipídeos/química , Glicolipídeos/genética , Glicolipídeos/metabolismo , Metaboloma/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Tensoativos/química , Tensoativos/metabolismo
12.
Aquat Toxicol ; 216: 105292, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31546069

RESUMO

Fipronil is a phenylpyrazole insecticide that entered the market to replace organochlorides and organophosphates. Fipronil impairs the regular inhibition of nerve impulses that ultimately result in paralysis and death of insects. Because of its use as a pest control, and due to runoff events, fipronil has been detected in freshwater systems near agricultural areas, and therefore might represent a threat to non-target aquatic organisms. In this study, the toxicity of fipronil to the freshwater midge Chironomus riparius was investigated at biochemical, molecular, and whole organism (e.g. growth, emergence, and behavior) levels. At the individual level, chronic (28 days) exposure to fipronil resulted in reduced larval growth and emergence with a lowest observed effect concentration (LOEC) of 0.081 µg L-1. Adult weight, which is directly linked to the flying performance and fecundity of midges, was also affected (LOEC = 0.040 µg L-1). Additionally, behavioral changes such as irregular burrowing behavior of C. riparius larvae (EC50 = 0.084 µg L-1) and impairment of adult flying performance were observed. At a biochemical level, acute (48 h) exposure to fipronil increased cellular oxygen consumption (as indicated by the increase of electron transport system (ETS) activity) and decreased antioxidant and detoxification defenses (as suggested by the decrease in catalase (CAT) and glutathione S-transferase (GST) activities). Exposure to fipronil also caused alterations in the fatty acid profile of C. riparius, since high levels of stearidonic acid (SDA) were observed. A comparison between exposed and non-exposed larvae also revealed alterations in the expression of globins, cytoskeleton and motor proteins, and proteins involved in protein biosynthesis. These alterations may aid in the interpretation of potential mechanisms of action that lead to the effects observed at the organism level. Present results show that environmentally relevant concentrations of fipronil are toxic to chironomid populations which call for monitoring of phenylpyrazole insecticides and of their ecological effects in freshwaters. Present results also emphasize the importance of complementing ecotoxicological data with molecular approaches such as proteomics, for a better interpretation of the mode of action of insecticides in aquatic invertebrates.


Assuntos
Chironomidae/genética , Água Doce , Pirazóis/toxicidade , Animais , Biomarcadores/metabolismo , Chironomidae/efeitos dos fármacos , Chironomidae/crescimento & desenvolvimento , Feminino , Sedimentos Geológicos/química , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Masculino , Poluentes Químicos da Água/toxicidade
13.
Microbiology (Reading) ; 165(10): 1135-1150, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31464662

RESUMO

Small non-coding sRNAs have versatile roles in regulating bacterial metabolism. Four short homologous Burkholderia cenocepacia sRNAs strongly expressed under conditions of growth arrest were recently identified. Here we report the detailed investigation of one of these, NcS27. sRNA NcS27 contains a short putative target recognition sequence, which is conserved throughout the order Burkholderiales. This sequence is the reverse complement of the Shine-Dalgarno sequence of a large number of genes involved in transport and metabolism of amino acids and carbohydrates. Overexpression of NcS27 sRNA had a distinct impact on growth, attenuating growth on a variety of substrates such as phenylalanine, tyrosine, glycerol and galactose, while having no effect on growth on other substrates. Transcriptomics and proteomics of NcS27 overexpression and silencing mutants revealed numerous predicted targets changing expression, notably of genes involved in degradation of aromatic amino acids phenylalanine and tyrosine, and in transport of carbohydrates. The conserved target recognition sequence was essential for growth phenotypes and gene expression changes. Cumulatively, our data point to a role of NcS27 in regulating the shutdown of metabolism upon nutrient deprivation in B. cenocepacia. We propose Burkholderiadouble-hairpin sRNA regulator bdhR1 as designation for ncS27.


Assuntos
Burkholderia cenocepacia/metabolismo , Carbono/metabolismo , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mutação , Proteômica , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética
14.
Adv Exp Med Biol ; 1073: 137-160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236842

RESUMO

BACKGROUND: This chapter reports the evaluation of two shotgun metaproteomic workflows. The methods were developed to investigate gut dysbiosis via analysis of the faecal microbiota from patients with cystic fibrosis (CF). We aimed to set up an unbiased and effective method to extract the entire proteome, i.e. to extract sufficient bacterial proteins from the faecal samples in combination with a maximum of host proteins giving information on the disease state. METHODS: Two protocols were compared; the first method involves an enrichment of the bacterial proteins while the second method is a more direct method to generate a whole faecal proteome extract. The different extracts were analysed using denaturing polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry aiming a maximal coverage of the bacterial protein content in faecal samples. RESULTS AND CONCLUSIONS: In all extracts, microbial proteins are detected, and in addition, nonbacterial proteins are detected in all samples providing information about the host status. Our study demonstrates the huge influence of the used protein extraction method on the obtained result and shows the need for a standardised and appropriate sample preparation for metaproteomic analysis. To address questions on the health status of the patients, a whole protein extract is preferred over a method to enrich the bacterial fraction. In addition, the method of the whole protein fraction is faster, which gives the possibility to analyse more biological replicates.


Assuntos
Fibrose Cística/complicações , Disbiose/diagnóstico , Fezes/química , Proteoma , Proteômica/métodos , Proteínas de Bactérias/análise , Cromatografia Líquida , Humanos , Espectrometria de Massas em Tandem
15.
Environ Pollut ; 246: 845-854, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623841

RESUMO

The use of an integrative molecular approach can actively improve the evaluation of environmental health status and impact of chemicals, providing the knowledge to develop sentinel tools that can be integrated in risk assessment studies, since gene and protein expressions represent the first response barriers to anthropogenic stress. This work aimed to determine the mechanisms of toxic action of a widely applied fungicide formulation (chlorothalonil), following a time series approach and using a soil model arthropod, Folsomia candida. To link effects at different levels of biological organization, data were collected on reproduction, gene expression and protein levels, in a time series during exposure to a natural soil. Results showed a mechanistic mode of action for chlorothalonil, affecting pathways of detoxification and excretion, immune response, cellular respiration, protein metabolism and oxidative stress defense, causing irregular cell signaling (JNK and NOD ½ pathways), DNA damage and abnormal cell proliferation, leading to impairment in developmental features such as molting cycle and reproduction. The omics datasets presented highly significant positive correlations between the gene expression levels at a certain time-point and the corresponding protein products 2-3 days later. The integrated omics in this study has provided useful insights into pesticide mechanisms of toxicity, evidencing the relevance of such analyses in toxicological studies, and highlighting the importance of considering a time-series when integrating these datasets.


Assuntos
Artrópodes/efeitos dos fármacos , Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Reprodução/efeitos dos fármacos , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Animais , Monitoramento Ambiental , Portugal
16.
ACS Appl Mater Interfaces ; 10(49): 41962-41977, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30444341

RESUMO

The surface properties of electrospun scaffolds can greatly influence protein adsorption and, thus, strongly dictate cell-material interactions. In this study, we aim to investigate possible correlations between the surface properties of argon, nitrogen, and ammonia and helium plasma-functionalized polycaprolactone (PCL) nanofibers (NFs) and their cellular interactions by examining the protein corona patterns of the plasma-treated NFs as well as the cell membrane proteins involved in cell proliferation. As a result of the performed plasma treatments, PCL NFs morphology was preserved, while wettability was improved profoundly after all treatments because of the incorporation of polar surface groups. Depending on the discharge gas, different types of groups are incorporated, which influenced the resultant cell-material interactions. Argon plasma-functionalized PCL NFs, only enriched by oxygen-containing functional groups, were found to show the best cell-material interactions, followed by N2 and He/NH3 plasma-treated samples. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and liquid chromatography-mass spectrometry clearly indicated an increased protein retention compared with non-treated PCL NFs. The nine proteins retained best on plasma-treated NF are important mediators of extracellular matrix interaction, illustrating the importance thereof for cell proliferation and the viability of cells. Finally, 92 proteins that can be used to differentiate how the different plasma treatments are clustered and subjected to a gene ontology study, illustrating the importance of keratinization and extracellular matrix organization.


Assuntos
Proliferação de Células , Teste de Materiais , Nanofibras/química , Poliésteres/química , Linhagem Celular , Sobrevivência Celular , Humanos , Molhabilidade
17.
Sci Rep ; 8(1): 16760, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425318

RESUMO

The ability of bacteria to infect a host relies in part on the secretion of molecular virulence factors across the cell envelope. Pseudomonas aeruginosa, a ubiquitous environmental bacterium causing opportunistic infections in humans, employs the type II secretion system (T2SS) to transport effector proteins across its cellular envelope as part of a diverse array of virulence strategies. General secretory pathway protein L (GspL) is an essential inner-membrane component of the T2SS apparatus, and is thought to facilitate transduction of the energy from ATP hydrolysis in the cytoplasm to the periplasmic components of the system. However, our incomplete understanding of the assembly principles of the T2SS machinery prevents the mechanistic deconvolution of T2SS-mediated protein secretion. Here we show via two crystal structures that the periplasmic ferredoxin-like domain of GspL (GspLfld) is a dimer stabilized by hydrophobic interactions, and that this interface may allow significant interdomain plasticity. The general dimerization mode of GspLfld is shared with GspL from Vibrio parahaemolyticus suggesting a conserved oligomerization mode across the GspL family. Furthermore, we identified a tetrameric form of the complete periplasmic segment of GspL (GspLperi) which indicates that GspL may be able to adopt multiple oligomeric states as part of its dynamic role in the T2SS apparatus.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Periplasma/metabolismo , Multimerização Proteica , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo II/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Domínios Proteicos , Estrutura Quaternária de Proteína
18.
Nat Commun ; 9(1): 4451, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367037

RESUMO

Sequence-defined macromolecules consist of a defined chain length (single mass), end-groups, composition and topology and prove promising in application fields such as anti-counterfeiting, biological mimicking and data storage. Here we show the potential use of multifunctional sequence-defined macromolecules as a storage medium. As a proof-of-principle, we describe how short text fragments (human-readable data) and QR codes (machine-readable data) are encoded as a collection of oligomers and how the original data can be reconstructed. The amide-urethane containing oligomers are generated using an automated protecting-group free, two-step iterative protocol based on thiolactone chemistry. Tandem mass spectrometry techniques have been explored to provide detailed analysis of the oligomer sequences. We have developed the generic software tools Chemcoder for encoding/decoding binary data as a collection of multifunctional macromolecules and Chemreader for reconstructing oligomer sequences from mass spectra to automate the process of chemical writing and reading.

19.
J Proteome Res ; 17(11): 3837-3852, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30229651

RESUMO

Streptomyces scabies is responsible for common scab disease on root and tuber vegetables. Production of its main phytotoxin thaxtomin A is triggered upon transport of cellulose byproducts cellotriose and cellobiose, which disable the repression of the thaxtomin biosynthesis activator gene txtR by the cellulose utilization regulator CebR. To assess the intracellular response under conditions where S. scabies develops a virulent behavior, we performed a comparative proteomic analysis of wild-type S. scabies 87-22 and its cebR null mutant (hyper-virulent phenotype) grown in the absence or presence of cellobiose. Our study revealed significant changes in abundance of proteins belonging to metabolic pathways known or predicted to be involved in pathogenicity of S. scabies. Among these, we identified proteins of the cello-oligosaccharide-mediated induction of thaxtomin production, the starch utilization system required for utilization of the carbohydrate stored in S. scabies's hosts, and siderophore synthesis utilization systems, which are key features of pathogens to acquire iron once they colonized the host. Thus, proteomic analysis supported by targeted mass spectrometry-based metabolite quantitative analysis revealed the central role of CebR as a regulator of virulence of S. scabies.


Assuntos
Proteínas de Bactérias/genética , Celobiose/farmacologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Piperazinas/metabolismo , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Celobiose/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Eletroforese em Gel Bidimensional , Ontologia Genética , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Proteômica/métodos , Sideróforos/biossíntese , Sideróforos/isolamento & purificação , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Streptomyces/patogenicidade , Espectrometria de Massas em Tandem , Virulência
20.
Sci Rep ; 8(1): 11376, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054531

RESUMO

The use of integrative molecular approaches can aid in a comprehensive understanding of the effects of toxicants at different levels of biological organization, also supporting risk assessment. The present study aims to unravel the toxicity mechanisms of a widely used herbicide to the arthropod Folsomia candida exposed in a natural soil, by linking effects on reproduction, proteomics and genome-wide gene expression. The EC50 effects on reproduction over 4 weeks was 4.63 mg glyphosate/kg of soil. The formulation included a polyethoxylated tallowamine as an adjuvant, which at 50% effect on reproduction had an estimated concentration of 0.87-1.49 mg/kg of soil. No effects were observed on survival and reproduction when using the isolated active substance, pointing the toxicity of the formulated product to the co-formulant instead of the active ingredient, glyphosate. RNA sequencing and shotgun proteomics were applied to assess differential transcript and protein expressions between exposed and control organisms in time, respectively. Specific functional categories at protein and transcriptome levels were concordant with each other, despite overall limited correlations between datasets. The exposure to this formulation affected normal cellular respiration and lipid metabolism, inducing oxidative stress and leading to impairment in biological life cycle mechanisms such as molting and reproduction.


Assuntos
Poluentes Ambientais/toxicidade , Genômica/métodos , Herbicidas/toxicidade , Testes de Toxicidade , Animais , Artrópodes/efeitos dos fármacos , Artrópodes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/efeitos dos fármacos , Análise de Sobrevida , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...